
AVF Control Number: AVF-VSR-90502/41

00N

I Ada* COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 880623Nl.09133
SD-CCICON plc

SD VAX/VMS x MC68020 Ada-Plus,3B.00
Local Area VAX Cluster x Motorola MC68020

Completion of On-site Testing:
23 June 1988

Prepared By:
The National Computing Centre Limited

Oxford Road
Manchester MI 7ED

United Kingdom

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C. 20301-3081 E ECTE

SFEB14 19qU
H

* Ada is a registered trademark of the United States Government (Ada
Joint Program Office).

j~Thi~ 1oNSTATEMENT A
Approved for pubic mez;87

DIslbution 89 2 13 087
-.. - - - - . m | l,



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE RDINSTRUCTIONS

BEFORE COMPLETEING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: SD- 23 June 1988 to 23 June 1989
SCICON plc, SD VAX/VMS x MC68020 Ada-Plus,
3B.00, Local Area VAX Cluster (Host) to 6. PERFORMING ORG. REPORT NUMBER
Motorola MC68020 (Target). (FO9 4as3N.q.13___
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

National Computing Centre, Ltd.
Manchester, UK.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

National Computing Centre, Ltd.
Manchester, UK.

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 23June 1988
United States Department of Defense 13. NUMBER OF PAGES
Washington, DC 20301-3081 52 p.

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)

UNCLASSIFIED
National Computing Centre, Ltd. 15a. R aFICATION/DOWNGRADING
Manchester, UK. N/A

16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
SD VAX/VMS x MC68020 Ada-Plus, 3B.00, SD-SCICON plc, National Computing Centre, Ltd., Local Area
VAX Cluster under VMS, V4.6 (Host) to Motorola MC68020 (MVME 133) No operating system (Target),
ACVC 1.9.

DO I L" 1473 EDITION OF I NOV 65 IS OBSOLETE

I J 3 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)



Ada* Compiler Validation Summary Report:

Compiler Name: SD VAX/VMS x MC68020 Ada Plus 3B.00

Certificate Number: 880623N1.09133

Host: Target:
Digital Equipment VAX Motorola MC68020 implememted on
Cluster comprising VAX 8600 MVME 133 Board
seven MicroVAX IIs and No operating system
VAX workstation 2, under
VMS, V4.6

Testing Completed 23 June 1988 Using ACVC 1.9

This report has been reviewed and is approved.

The National Computing Centre Ttd
Jane Pink
Oxford Road
Manchester, M1 7ED
United Kingdom

dal~n{

A~a alidtion Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Jpnt Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20

* Ada is a registered trademark of the United States Government (Ada
Joint Program Office).



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT ......... 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT ............. 1-2
1 .3 REFERENCES ........................................ 1-3
1.4 DEFINITION OF TERMS ............................... 1-3
1.5 ACVC TEST CLASSES ................................. 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED .............................. 2-1
2.2 IMPLEMENTATION CHARACTERISTICS .................... 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS ...................................... 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS .................. 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER ................ 3-2
3.4 WITHDRAWN TESTS ...................................3-2
3.5 INAPPLICABLE TESTS ................................ 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS .... 3-4
3.7 ADDITIONAL TESTING INFORMATION ..................... 3-5

3.7.1 Prevalidation ............................... 3-5
3.7.2 Test Method ................................. 3-5
3.7.3 Test Site ................................... 3-6

APPENDIX A CONFORMANCE STATEMENT Accession For

NTIS GRA&Ik e

APPENDIX B APPENDIX F OF THE Ada STANDARD DTIC TAB Q1
Unannounced 0
Justirication

APPENDIX C TEST PARAMETERS
By
Distribution2/_

APPENDIX D WITHDRAWN TESTS Availability Codes

TbeIoAyfCtn andae

Table of Contents Page 1 of I



CHAPTER 1

INTRODUCTION

This Validation Summary Report -fVsR-P describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compii;_r using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent
features must conform to the requirements of the Ada Standard. The Ada
Standard must be . implemented in its entirety, and nothing can be
implemented that is not in the Standard.'

Even though all validated Ada Compilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.

The information in this report is derived from the test results
produced during. validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an Ada
compiler and evaluating the results. " The purpose of validating is to
ensure conformity of the compiler to the Ada Standard by testing that
the compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behaviour that is implementation dependent but permitted by
the Ada Standard. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

Chapter 1 Paql of 6



INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on

an Ada compiler. Testing was carried out for the following purposes:-

To attempt to identify any language constructs supported by
the compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported
by the compiler but required by the Ada Standard

To determine that the implementation-dependent behaviour is
allowed by the Ada Standard.

Testing of this compiler was conducted by NCC under the direction of
the AVF according to procedures established by the Ada Joint Program
Office and administered by the Ada Validation Organization (AVO). On-
site testing was completed 23 June 1988 at SD-SCICON plc, Pembroke
House, Pembroke Broadway, Camberley, Surrey.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United-
States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:-

The National Computing Centre Ltd
Oxford Road
Manchester Ml 7ED
United Kingdom

Chapter 1 Page 2 of 6



INTRODUCTION

Questions regarding this report or the validation test results should
be directed to the AVF listed above or to:-

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language, ANSI/MIL-STD-
1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada An Ada Commentary contains all information relevant to
the point addressed by a comment on the Ada Standard.
These comments are given a unique identification number
having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and
technical support for Ada validations to ensure
consistent practices.

Chapter 1 Page 3 of 6



INTRODUCTION

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a result

that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language
test that a compiler is not required to support or may

legitimately support in a way other than the one
expected by the test.

Passed test An ACVC test for which a compiler generates the
expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding
a particular feature or a combination of features to the
Ada Standard. In the context of this report, the term
is used to designate a single test, which may comprise
one or more files.

Withdrawn An ACVC test found to be incorrect and not used
test to check conformity to the Ada Standard. A test may be

incorrect -because it has an invalid test objective,
fails to meet its test objective, or contains illegal or
erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce compilation
or link errors.

Class A tests check that legal Ada programs can be successfully
compiled and executed. There are no explicit program components in a
Class A test to check semantics. For example. a Class A test checks
that reserved words of another language (other than those already
reserved in the Ada language) are not treated as reserved words by an
Ada compiler. A Class A test is passed if no errors are detected at
compile time and the program executes to produce a PASSED message.

Chapter 1 Page 4 of 6



INTRODUCTION

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and produces a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when
it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a
compiler by the Ada Standard for some parameters--for example, the
number of identifiers permitted in a compilation or the number of units
in a library--a compiler may refuse to compile a Class D test and
still be a conforming compiler. Therefore, if a Class D test fails to
compile because the capacity of the compiler is exceeded, the test is
classified as inapplicable. If a Class D test compiles sucessfully,
it is self-checking and produces a PASSED or FAILED message during
execution.

Each Class E test is self-checking and produces a NOT APPLICABLE
PASSED, or FAILED message when it is compiled and executed. However,
the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE,
support are self-checking features of the executable tests. The
package REPORT provides the mechanism by which executable tests report
PASSED, FAILED, or NOT APPLICABLE results. It also provides a set of
identity functions used to defeat some compiler optimizations allowed
by the Ada Standard that would circumvent a test objective. The
procedure CHECK FILE is used to check the contents of text files
written by some of the Class C tests for chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set
of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are
not operating correctly, then the validation is not attempted.

Chapter 1 Page 5 of 6



INTRODUCTION

The text of the tests in the ACVC follow conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all
implementations in separate tests. However, some tests contain values
that require the test to be customized according to implementation-
specific values--for example, an illegal file name. A list of the
values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an
implementation is considered each time the implementation is validated.
A test that is inapplicable for one validation is not necessarily
inapplicable for a subsequent validation. Any test that was determined
to contain an illegal language construct or an erroneous language
construct is withdrawn from the ACVC and, therefore, is not used in
testing a compiler. The tests withdrawn at the time of this
validation are given in Appendix D.

Chapter 1 Page 6 of 6



CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

Tf - candidate compilation system for this validation was tested under
tLe following configuration:

Compiler: SD VAX/VMS x MC68020 Ada Plus, 3B.00

ACVC Version: 1.9

Certificate Number: 880623N1.09133

Host Computer:

Machine: Local Area VAX cluster comprising VAX
8600, seven microVAX IIs and VAX workstation 2

Operating System: VMS V4.6

Memory Size: 83Mb

Target Computer:

Machine: Motorola MC68020
implemented on MVME/133 board

Operating System: no operating system

Memory Size: iMb

Communications Network: RS232

Chapter 2 Page 1 of 6



CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behaviour of a compiler in those areas of the Ada Standard that
permit implementations to differ. Class D and E tests specifically
check for such implementation differences. However, tests in
other classes also characterize an implementation. The tests
demonstrate the following characteristics:

Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels,
a:-d recursive procedures separately compiled as subunits
nested to 17 levels. It correctly processes a compilation
containing 723 variables in the same declarative part. (See
tests D55AO3A..H (8 tests), D56001B, D64005E..G (3 tests), and
D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. (See
tests D4AO02A, D4AO02B, D4AO04A, and D4AO04B.)

Predefined types.

This implementation supports the additional predefined types
SHORTINTEGER, LONGINTEGER, and LONG-FLOAT, in the package
STANDARD. (See tests B86001C and B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC ERROR or CONSTRAINTERROR during execution. This
implementation raises NUMERIC-ERROR during execution. (See test
E24101A.)

Expression evaluation.

Apparently no default initialization expressions for record
components are evaluated before any value is checked to belong
to a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

Chapter 2 Page 2 of 6



CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range. (See
test C35903A.)

Apparently NUMERICERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

Sometimes NUMERIC ERROR is raised when a literal operand in
a fixed-point comparison or membership test is outside the
range of the base type. (See test C45252A.)

Apparently underflow is gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is appare.ntly round
to even.(see tests C46012A..Z.).

The method used for rounding to longest integer is apparently
round to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
C4AO14A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAXINT components raises no exception (See test C36003A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array
type xith SYSTEM.MAXINT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises no exception. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT ERROR when the length of a
dimension is calculated and exceeds INTEGER'LAST. (See test
C52104Y.)

Chapter 2 Page 3 of 6



CONFIGURATION INFORMATION

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises no exception.
(See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning two-
dimensional array types, the expression does not appear to be
evaluated in its entirety before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is compatible with
the target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications . (See
test E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINTERROR
is raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choicE-
appear to be evaluated before checking against the index type
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINTERROR is raised if
a bound in a nonnull range of a nonnull aggregate does not belong
to an index subtype. (See test E43211B.)

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

Chapter 2 Page 4 of 6



CONFIGURATION INFORMATION

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C35502I..a, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C35507I..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are
supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
supported. (See test A39005B.)

Length clauses with STORAGESIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGESIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are not supported. (See test
A39005G.)

Length clauses with SIZE specifications for derived integer types
are not supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is not supported for procedures. The pragma
INLINE is not supported for functions. (See tests LA3004A,
LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIAL 10 can be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

Chapter 2 Page 5 of 6



CONFIGURATION INFORMATION

The Director, AJPO, has determined (AI-00332) that every call to
OPEN and CREATE must raise USE ERROR or NAME ERROR if file
input/output is not supported. This implementation exhibits this
behaviour for SEQUENTIAL_10, DIRECT_10 and TEXT_10.

Generics.

Generic subprogram declarations and bodies can be compiled
in separate compilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

Chapter 2 Page 6 of 6



CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler
was tested, 27 tests had been withdrawn because of test errors.
The AVF determined that 400 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 201 executable tests that use floating-point
precision exceeding that supported by the implementation and 206
executable tests that use file operations not supported by the
implementation. Modifications to the code, processing, or grading
for 10 tests were required to successfully demonstrate the test
objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate
acceptable conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B C D E L

Passed 108 1050 1465 17 11 44 2695

Inapplicable 2 1 388 0 7 2 400

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 46 3122

Chapter 3 Page 1 of 6



TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 190 499 548 248 166 98 141 326 131 36 234 3 75 2695

Inapplicable 14 73 126 0 0 0 2 1 6 0 0 0 178 400

Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time
of this validation:

B28003A C35904A C37215C C41402A CC1311B
C35904B C45332A

E28005C C35A03E C37215E C45614C BC3105A
C34004A C35A03R C37215G A74016C ADlAOIA
C35502P C37213H C37215H C85018B CE2401H
A35902C C37213J C38102C C87B04B CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to
support. Others may depend on the result of another test that is
either inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not
necessarily inapplicable for a subsequent attempt. For this
validation attempt, 400 tests were inapplicable for the reasons
indicated:

• C35702A uses SHORTFLOAT which is not supported by this
implementation.

A39005G uses a record representation clause. Although record
representation clauses are supported, there are restrictions. The
applicable restriction for this test is on the alignment clause-
see section F.4.2.1 of Appendix F.

Chapter 3 Page 2 of 6



TEST INFORMATION

. C45231D requires a macro substitution for any predefined numeric
types other than INTEGER, SHORTINTEGER, LONGINTEGER, FLOAT,
SHORT FLOAT, and LONGFLOAT. This compiler does not support any
such types.

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit
fixed-point base types which are not supported by this compiler.

C4AO13B uses a static value that is outside the range ofthe most
accurate floating-point base type. The test executes and reports
NOTAPPLICABLE.

B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no
such type for this implementation.

C86001F redefines the package SYSTEM, but TEST 10 (a package
used to collect the executable test results) is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependant on the package
TESTIO.

-C96005B requires the range of type DURATION to be different from
those of its base type; in this implementation they are the same.

CA3004E, EA3004C, and LA3004A use the INLINE pragma for
procedures, which is not supported by this compiler.

• CA3004F, EA3004D, and LA3004B use the INLINE pragma for functions,
which is not supported by this compiler.

The following 178 tests are inapplicable because sequential, and
direct access files are not supported.

CE2102C CE2102G..H(2) CE2102K CE2104A..D(4)
CE2105A..B(2) CE2106A..B(2) CE2107A..I(9) CE2108A..D(4)
CE2109A..C(3) CE2110A..C(3) CE2111A..E(5) CE2111G..H(2)
CE2115A..B(2) CE2201A..C(3) CE2201F..G(2) EE2201D..E(2)
CE2204A..B(2 CE2208B CE2210A

Chapter 3 Page 3 of 6



TEST INFORMATION
EE2401D

CE2401A..C(3) CE2401E..F(2) CE2404A EE2401G
CE2405B CE2406A CE2407A CE2408A
CE2409A CE2410A CE2411A AE3101A
CE3102B EE3102C CE3103A CE3104A
CE3107A CE3108A..B(2) CE3109A CE3110A
CE3111A..E(5) CE3112A..B(2) CE3114A..B(2) CE3115A
CE3203A CE3301A..C(3) CE3302A
CE3305A CE3402A..D(4) CE3403A..C(3) CE3403E..F(2)
CE3404A..C(3) CE3405A..D(4) CE3406A..D(4) CE3407A..C(3)
CE3408A..C(3) CE3409A CE3409C..F(4) CE3410A
CE3410C..F(4) CE3411A CE3412A CE3413A
CE3413C CE3602A..D(4) CE3603A CE3604A
CE3605A..E(5) CE3606A..B(2) CE3704A..B(2) CE3704D..F(3)
CE3704M..0(3) CE3706D CE3706F CE3804A..E(5)
CE3804G CE3804I CE3804K CE3804M
CE3805A..B(2) CE3806A CE3806D..E(2) CE3905A..C(3)
CE3905L CE3906A..C(3) CE3906E..F(2)

Results of running a subset of these tests showed that the proper
exceptions are raised for unsupported file operations.

The following 201 tests require a floating-point accuracy that
exceeds the maximum of 15 digits supported-by this
implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 testsj-
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of
code, processing, or evaluation in order to compensate for
legitimate implementation behaviour. Modifications are made by the AVF
in cases where legitimate implementation behaviour prevents the
successful completion of an (otherwise) applicable test. Examples
of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into subtests
so that all errors are detected; and confirming that messages
produced by an executable test demonstrate conforming behaviour
that wasn't anticipated by the test (such as raising one exception
instead of another).

Modifications were required for only 4 class C tests and 6 Class B
tests.

Chapter 3 Page 4 of 6



TEST INFORMATION

The following Class B tests were split because syntax errors at one
point resulted in the compiler not detecting other errors in the test:

B22003A B29001A B91001H BC2001D BC2001E
BC3204B

C4AO12B This test checks that 0.0 raised to a negative value
raises CONSTRAINT ERROR; however, NUMERIC ERROR is also an
acceptable exception to be raised in this case. Thus, conforming
implementations must either "pass" this test or print failure
messages that indicate that the "WRONG EXCEPTION" was raised.

C64104M, CBI010B, C95085M, modified versions using representation
clauses to increase the collection sizes for C64104M and CBl010B
and C95085M to 8K Bytes, 4K Bytes and 4K Bytes respectively, were
prepared. These modified tests executed susccessfully. The
compiler will also allow the default collection size to be altered
using a compiler option, this facility was tested and resulted in
tests which executed successfully.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9
produced by the SD VAX/VMS x MC68020 Ada-Plus, 3B.00 was submitted to
the AVF by the applicant for review. Analysis of these results
demonstrated that the compiler successfully passed all applicable
tests, and the compiler exhibited the expected behaviour on all
inapplicable tests.

3.7.2 Test Method

Testing of the SD VAX/VMS x MC68020 Ada-Plus, 3B.00 using Version 1.9
was conducted on-site by a validation team from the AVF. The
configuration consisted of a Local Area VAX Cluster host operating
under VMS, V4.6, and a Motorola MC68020 target with no operating
system. The host and target computers were linked via RS232.

Chapter 3 Page 5 of 6



TEST INFORMATION

A magnetic tape containing all tests was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to
the magnetic tape. Tests requiring modifications during the pre-
validation testing were not included in their modified form on the
magnetic tape.

The contents of the magnetic tape were loaded directly onto the
host computer.

After the test files were loaded to disk, the full set of
tests was compiled and linked on the Local Area VAX Cluster, and all
executable tests were run on the Motorola MC68020. Object files were
linked on the host computer, and executable images were transferred to
the target computer via RS232. Results were printed from the host
computer, with results being transferred to the host computer via
RS232.

The compiler -.as tested using command scripts provided by SD-SCICON plc
and reviewed by the validation team. The compiler was tested using all
default option settings.

Tests were compiled, linked, and executed (as appropriate) using
a Local Area VAX Cluster comprising a VAX 8600, seven Microvax IIs and
a VAX workstation 2 connected via ethernet, as the host computers and
a single target computer. Test output, compilation listings, and job
logs were captured on magnetic tape and archived at the AVF. The
listings examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at SD-SCICON plc, Pembroke House, Pembroke
Broadway, Camberley and was completed on 23 June 1988.

Chapter 3 Page 6 of 6



APPENDIX A

DECLARATION OF CONFORMANCE

SD-SCICON plc have submitted the following Declaration of Conformance
concerning the SD Motorola VAX/VMS x MC68020 Ada Plus, 3B.00

Appendix A Page 1 of 3



DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor SD-SCICON plc

Ada* Validation Facility : The National Computing Centre Limited,
Oxford Rd, Manchester, M17ED

Ada Compiler Validation Capability (ACVC) Version: 1.9

BASE CONFIGURATION

Base Compiler Name : SD VAX/VMS x MC68020 Ada-Plus
Version : 3B.00
Host Architecture : DEC Local Area VAX Cluster comprising of

a VAX 8600, seven MicroVAX IIs and VAX
Workstation 2.

Host Operating System VMS
Version : V4.6
Target Architecture : Motorola MC68020 implemented on MVME 133

board
Target Operating System : No operating system

I, the undersigned, representing SD-SCICON plc, have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A
in the compiler(s) listed in this declaration. I declare that SD-
SCICON plc is the owner of record of the Ada language compiler(s)
listed above and, as such, is responsible for maintaining said
compiler(s) in conformance to ANSI/MIL-STD-1815A. All certificates and
registrations for Ada language compiler(s) listed in this declaration
shall be made nly in the owner's corporate name.

... . .__ _ _ _ _ _ _ _ _ _ _ __,_- _ Date _ -_ _ -_ _ _

Name of Person signing T-6. . /7-
Title :

*Ada is a registered trademark of the United States Government (Ada
Joint Program Office).

Appendix A Page 2 of 3



DECLARATION OF CONFORMANCE

Owner's Declaration

I, the undersigned, representing SD-SCICON plc, take full
responsibility for the implementation and maintenance of the Ada
compiler(s) listed above, and agree to the public disclosure of the
final Validation Summary Report. I further agree to continue to comply
with the Ada trademark policy, as defined by the Ada Joint Program
Office. I declare that all of the Ada language compilers listed, and
their host/target performance, are in compliance with the Ada Language
Standard ANSI/MIL-STD-1815A.

____________________Date: -46&. Y

Name of Person signing :

Title-

Name of Base Compiler Owner

Appendix A Page 3 of 3



APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the SD VAX/VMS x Motorola
MC68020 implememted on MVME board Ada Plus, are described in the
following sections, which discuss topics in Appendix F of the
Ada Standard. Implementation-specific portions of the package STANDARD
are also included in this appendix.

B-1
APPENDIX F OF THE Ada STANDARD



Systems Designers

Ada-Plus
VAXNMS
MC68020

Appendix F to the Reference Manual

Reference: D.A.REF.AF[BC-MH]

Issue: 3.0

Date of Issue: February 1988

Software Version: Release 3A.00

Systems Designers Software Technology, Camberley, Surrey, U.K. t

Systems Designers Software Inc., Cambridge, Massachusetts, U.S.A.

t Systems Designers plc registered in England 1642767



February, 1988

The copyright in this work Is vested in Systems Designers plc and the document Is Issued in confidence for the
purpose only for which it Is supplied. It must not be reproduced in whole or In part or used for tendering or
manufacturing purposes except under an agreement or with the consent in writing of Systems Designers plc and
then only on the condition that this notice is included in any such reproduction. No information as to the contents
or subject matter of this document or any part thereof arising directly or Indirectly therefrom shall be given orally
or in writing or communicated in any manner whatsoever to any third party being an indtvidual firm or company or
any employee thereof without the prior consent in writing of Systems Designers plc.

Copyright 01988 by Systems Designers plc

All Rights Reserved.

This document was prepared using VAX DOCUMENT, Version 1.0 7



* TABLE OF CONTENTS

APPENDIX F IMPLEMENTATION-DEPENDENT CHARACTERISTICS ..... -

F.1 Implementation-Dependent Pragmas................................... F-I
F.1.1 Pragma DEBUG.............................................. F-1
F.1.2 Pragrna EXPORT.............................................. F-1
F.1.3 Pragma SQUEEZE............................................. F-2
F.1.4 Pragma SUPPRESS-.ALL......................................... F-2
P.I.5 Pragrna SUPPRESS-STACK....................................... F-2

F.2 Implementation-Dependent Attributes.................................. F-2

F.3 Package SYSTEM................................................ F-2
F.3.1 Function CONVERT..ADDRESS.................................... F-3

FA4 Restrictions on Representation Clauses.................................. F-4
F.4.1 Length Clauses............................................... F-4

F.4.1.1 Attribute SIZE............................................. F4
F.4.1.2 Attribute SMALL........................................... F-4
F.4.1.3 Attnibute STORAGE_.S[ZE..................................... F-4

F.4.2 Record Representation Clauses.................................... F-4
F.4.2.1 Alignment Clause.......................................... F-4
F.4.2.2 Component Clause......................................... F-4

F.4.3 Address Clauses.............................................. F-4
F.4.3.1 Object Addresses.......................................... F-5
F.4.3.2 Subprogram, Package and Task Unit Addresses..................... F-5
F.4.3.3 Entry Addresses........................................... F-5

F.5 Implementation-Generated Names..................................... F-5

F.6 Interpretation of Expressions in Address Clauses........................... F-5

F.7 Unchecked Conversions............................................ F-6

F.8 Characteristics of the Input/Output Packages.............................. F-6
P.8.1 The Package SEQUENTIALJO.................................... F-6
F.8.2 The Package DIRECT-1......................................... F-6
F.8.3 The Package TEXTJO.......................................... F-7
F.8.4 The Package 10-.EXCEPTIONS..................................... F-7

F.9 Package STANDARD.............................................. F-7

F.10 Package MACHINE_.CODE......................................... F-10

F.11 Language-Defined Pragmas......................................... F0
F.11.1 Pragma INLINE.............................................. F-10



F.11.2 Pragma INTERFACE ........................................ F-10
F.11.2.1 Assem bler ........................................... F-10

F.11.2.1.1 Assembler Names ..................................... F-10
F.11.2.1.2 Parameter-Passing Conventions ............................. F-11
1.11.2.1.3 Procedure-Calling Mechanism ............................. F-11

F.11.2.2 RTS ................................................ F-13
F.11.2.2.1 RTS Nam es ....................................... F-13
F. 11.2.2.2 Parameter.Passing Conventions ............................. F-13
F.11.2.2.3 Procedure-Calling Mechanism ............................. F-13

F.11.3 Pragma OPTIMIZE ......................................... F-13
F.1l.4 Pragm a PACK ............................................ F-14
F.11.5 Pragma SUPPRESS ......................................... F-14

FIGURES
F-I Package SYSTEM .......................................... F-3
F-2 Package STANDARD ......................................... F-7
F-3 Routine Activation Record on Entry to Called Subprogram ................ F-12
F-4 Routine Entry And Exit Code ..................................... F-13

IV



Preface

This document describes the implementation-dependent characteristics of the Ada compiler supplied
with VAXIVMS x MC68020 Ada-Plus.

The document should be considered to be Appendix F to ANSI/MIL-STD-1815A-1983, Reference
Manual for the Ada Programming Language ILRM].

D.A.REF.AF[BC-MH] 3.0 Preface v



* References

(AL.RM j Ada-Plus VAXIVMS MC88020 Assembly Language Reference Manual:
OA.AEFALRM[BC-MH)

(TH) Ada-Plus VAXIVMS MC68020 Target Handbook-
D.A.REF.THBC-M4J

(LRMI Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-181SA. US Department of Defense, 22 January 1983

D.A.REF.AF[SC-MHI :3.0 Referiences Ai



APPENDIX F

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

F.1 Implementation-Dependent Pragmas
F.1.1 Pragma DEBUG

Form

pragma DEBUG ( NAME -> I value )
The pragma takes a single argument value which is the name of a scalar or access type.

Position

The pragma can be placed at the position of a basic-declarative-item, a later declarativeitem or
a statement.

Effect

The effect of the pragma is to cause the compiler to generate out-of-line code that writes the value
to a buffer. The code is optionally executed by the Debug System by inserting a breakpoint at
the position of the pragma in the code.

F.1.2 Pragma EXPORT

Form

pragma EXPORT ([ ADA-NAME -> I name, [ EXT_NAME -> ) namestring)

The pragma takes two arguments, name and name-string. The name must be the simple name
of a variable at the package level and name.string must be a string literal that is unique for
the entire program.

Position

The pragma can be placed at the position of a basic-declarative-item of a librarypackagespecification
or in the declarative-part of a library.package.body.

Effect

The effect of the pragma is to cause the compiler to generate additional builder information that
associates the name with the namestring. This external naming is restricted to static data objects.
The parameter name-string must conform to the naming conventions imposed by the MC68020
Assembler, see Assembly Language Reference Manual {ALRM} for details.

D.A.REF.AFJBC-MHJ : 3.0 Implementation-Dependent Characteristics F-1



F.1.3 Pragme SQUEEZE

Form

pragma SQUEEZE ( type_simple_name);

Takes the simple name of record or array type as a single argument.

Position
The allowed positions for this pragma, and the restrictions on the named type, are governed by
the same rules as for a representation clause; in particular, the pragma must appear before anx
use of representation attribute of the squeezed entity.

Effect

The pragma specifies that storage minimization to bit level is to be used as the main criterion
when selecting the representation of the given type.

F.1.4 Pragma SUPPRESSALL

Form

pragma SUPPRESS-ALL;

Position
The pragma must occur before anything else in the source file apart from comments or other
pragmas.

Effect

The effect of the pragma is to request that the compiler leaves out all run-time checks for
CONSTRAINTERROR and NUMERCERROR.

F.1.5 Pragma SUPPRESSSTACK

Form

pragma SUPPRESS-STACK;

Position

The pragma must occur before anything else in the source file apart from comments or other
pragmas.

Effect

The effect of the pragma is to request that the compiler leaves out all run-time checks for
STORAGE-ERROR.

F.2 Implementation-Dependent Attributes
There are no such attributes.

F.3 Package SYSTEM

The specification of the package SYSTEM is given in Figure F-I.

F-2 Implementation-Dependent Characteristics D.A.REF.AF[BC-MH]: 3.0



Figure F-i: Package SYSTEM
package SYSTEM is

type ADDRESS is private;

type NAME is (MC68020);

SYSTEM NAME : constant NAME = MC68020;
STORAGE-UNIT : constant := 8;
MEMORY-SIZE : constant := 2**32;

MININT : constant := -(2**31);
MAXINT : constant := (2**31)-1;

MAX-DIGITS : constant :. 15;

MAX-MANTISSA : constant := 31;

FINE DELTA : constant := 2#1.0#E-31;
TICK : constant := 2#1.0#E-7,

subtype PRIORITY is INTEGER range 0 .. 126;

type UNIVERSAL INTEGER in range MININT MAXINT;

subtype EXTERNAL-ADDRESS is STRING;

function CONVERT-ADDRESS (ADOR : EXTERNAL-ADDRESS)
return ADDRESS;

function CONVERT ADDRESS (ADDR : ADDRESS)
return EXTERNAL ADDRESS;

function "+" (ADDR : ADDRESS;
OFFSET : UNIVERSAL-INTEGER)

return ADDRESS;

private

-- Implementation-dependent type ADDRESS

end SYSTEM;

F.3.1 Function CONVERTADDRESS

In order to obtain addresses, the function CONVERTADDRESS is supplied. The function takes a
parameter of type EXTERNAL-ADDRESS which must be eight or less hexadecimal characters repre-
senting an address. If the address is outside the range of 0..MEMORYSIZE, the predefined exception
CONSTRAINT-ERROR is raised. CONSTRAINTERROR is also raised if the EXTERNAL-ADDRESS
contains any non-hexadecimal characters.

The function is overloaded to take a parameter of type ADDRESS and return an EXTERNALADDRESS.
This value has all leading zeros suppressed unless the address is zero, in which case a single zero is
returned.

Examples:
ADDR :- CONVERT-ADDRESS ("0C45"); -- address 3141
STR := CONVERT-ADDRESS (ADDR); -- STR(i..3) - "4C45"
VAR : CONVERT-ADDRESS (VARIABLE'ADDRESS);

D.A.REF.AF[BC-MHj : 3.0 Implenentatlon-Dependent Characteristics F-3



F4 Restrictions on Representation Clauses
F.4.1 Length Clauses

F.4.1.1 Attribute SIZE

The value specified for SIZE must not be less than the minimum number of bits required to represent
all values in the range of the associated type or subtype. Otherwise, a Compiler Restriction is reported.

F.4.1.2 Attribute SMALL

There are no restrictions for this attribute.

F.4.1.3 Attribute STORAGE_SIZE
For access types the limit is governed by the address range of the target machine and the maximum
value is determined by SYSTEM.ADDRESS'LAST.

For task types the limit is also SYSTEM.ADDRESS'LAST.

F.4.2 Record Representation Clauses

F.4.2.1 Alignment Clause
The static.simpleexpression used to align records onto storage unit boundaries must deliver the
values 0 (bit aligned), 1 (byte aligned), 2 (word aligned) or 4 (long word aligned).

F.4.2.2 Component Clause

Non-scalar types must be aligned and sized correctly.

The component size defined by the static range must not be less than the minimum number of bits
required to hold every allowable value of the component. For a component of non-scalar type, the
size must not be larger than that chosen by the compiler for the type.

F.4.3 Address Clauses

Address clauses are implemented as assignments of the address expressions to objects of an appro-
priate access type.

An object being given an address is assumed to provide a means of accessing memory external to the
Ada program. An object declaration with an address clause is treated by the compiler as an access
object whose access type is the same as the type of the object declaration. This access object is
initialised with the given address at the point of elaboration of the corresponding address clause. For
example, consider:

X INTEGER;

for X'ADDRESS use at CONVERTADDRESS("FFOO");

This is equivalent to:

F-4 Implementation-Dependent Characteristics D.A.REF.AFIBC-MHI: 3.0



type XP is access INTEGER;
X X P;

X : new ATADDR8SS(X P, "FF00");

-- where function newATADDRESS claims no store but returns the address given.

NOTE

See Section F.6 for interpretation of expressions in address clauses and Section F.3.1 for
information on CONVERTADDRESS.

It is the responsibility of some external agent to initialise the area at a given address. The Ada program
may fail unpredictably if the storage area is initialised prior to the elaboration of the address clause.
The access object can be used for reading from and writing to the memory normally, but only after
the elaboration of the address clause.

Address clauses can only be given for objects and task entries. Address clauses are not supported for
other entities.

Unchecked Storage Deallocation will not work for objects with address clauses.

F.4.3.1 Object Addresses

For objects with an address clause, a pointer is declared that points to the object at the given address.
There is a restriction, however, that the object cannot be initialised either explicitly or implicitly (i.e.
the object cannot be an access type).

F.4.3.2 Subprogram, Package and Task Unit Addresses

Address clauses for subprograms, packages and task units are not supported by this version of the
compiler.

F.4.3.3 Entry Addresses

Address clauses for entries are supported; the address given is the address of an interrupt vector. See
the Target Handbook { TH} for details.

Example:

task INTERRUPT HANDLER is
entry DONE;
for DONE use at SYSTEM.CONVERTADDRESS ("C");

end INTERRUPT HANDLER;

Note that it is only possible to define an address clause for an entry of a single task.

F.5 Implementatlon-Generated Names
There are no implementation-generated names denoting implementation-dependent components.

F.6 Interpretation of Expressions In Address Clauses
The expressions in an address clause are interpreted as absolute addresses on the target. Address
clauses for subprograms, packages and tasks are not implemented.

D.A.REF.AF[BC-MH]: 3.0 Implementation-Dependent Characteristics F-5



F.7 Unchecked Conversions
The implementation imposes the restriction on the use of the generic function UNCHECKED-CONVERSION
that the size of the target type must not be less than the size of the source type.

F.8 Characteristics of the Input/Output Packages
The predefined input/output packages SEQUENTIALJO, DIRECT-1O and TEXT_O are implemented
as "null' packages that conform to the specification given in the Ada Language Reference Manual (LRM).
The packages raise the exceptions specified in Ada Language Reference Manual ILRM], Chapter 14. There
are four possible exceptions that can be raised by these packages. These are given here in the order
in which they will be raised:
a. The exception STATUSERROR is raised by an attempt to operate upon a file that is not open,

i.e. any files other than the standard input and output files (since no files can be opened).
b. The exception MODEERROR is raised if any input operation is attempted using the standard

output file or if any output operation is attempted using the standard input file.
c. The exception USE-ERROR is raised upon any attempt to create or open a file, or to set line or

page lengths to any value other than UNBOUNDED.
d. The exception END-ERROR is raised if any input operation is attempted from the standard input

file. Note that the standard output file is treated as a character sink, and output operations to it
have no effect.

Note that NAME-ERROR cannot be raised since there are no restrictions on file names.
The predefined package IOEXCEPTIONS is defined as given in the Ada Language Reference Manual
ILRMI.
Note that 1/0 operations on strings are implemented and operate in the normal way; it is only file 110
that is implemented as described above.

The predefined package LOWLEVELIO is not implemented for the MC68020 target.

The implementation-dependent characteristics are described in Sections F.8.1 to F.8.4.

F.8.1 The Package SEQUENTIALIO
When any procedure is called, the exception STATUS-ERROR, MODE-ERROR or USEERROR is
raised (there are no restrictions on the format of the NAME or FORM parameters).

F.8.2 The Package DIRECTIO

When any procedure is called, the exception STATUS-ERROR, MODE-ERROR or USE-ERROR is
raised (there are no restrictions on the format of the NAME or FORM parameters).

The type COUNT is defined:
type COUNT is range 0 .. INTEGER'LAST;

F-6 Implementatlon-Dependent Characteristics D.A.REF.AF[BC-MHj: 3.0



F.8.3 The Package TEXTIO

When any procedure is called, the exception STATUS.ERROR, END_ERROR, MODE_ERROR or
USE-ERROR is raised (there are no restrictions on the format of the NAME or FORM parameters).
However, integer and real values can be read from, or written to, strings.

The type COUNT is defined:

type COUNT in range 0 .. INTEGEP.'LAST;

The subtype FIELD is defined:
subtype FIELD is INTEGER range 0 .. 255;

F.8.4 The Package IOEXCEPTIONS

The specification of the package is the same as given in the Ada Language Reference Manual [LRMJ.

F.9 Package STANDARD

The specification of package STANDARD is given in Figure F-2.

Figure F-2: Package STANDARD
package STANDARD is

type BOOLEAN is (FALSE, TRUE);

type SHORT INTEGER in range
- 128 .. 127;

type INTEGER is range
- 32768 .. 32 767;

type LONG INTEGER ia range
- 2147483648 .. 2147483_647;

type FLOAT is digits 6 range
- 16#0.FFFFFF#E32 .. 16#O.FFFFFF#E32;

type LONGFLOAT is digits 15 range
- 16#0.FFFFFFFF FFFFFFF#E44
16#0.FFFFFFFF FFFFFFF#E44;

type CHARACTER is
inul, soh, stx, etx, eot, enq, ack, bel,
be , ht , if , vt , ff , cr , so , si ,
die, dcl, dc2, dc3, dc4, nak, syn, etb,
can, em , sub, eec, fa , gs , rs , us

' o' . 191, 1:', 1(1, #l\9 >to f ?1

'@', W ,' 'B' 'C', 'D', 'E', '&' ,',

' ', ' ', '' '' , ' ', ' ', ' ', '',
41 IQ , , IS , $TO U , IV , W ,

'@ "1 'A', 'B , I(,, \D , 'J"' , # G ,,
_ I, tat, fJ', 'K', 'd', ?M', I' , '0',

' P h o t o i , 'R ', 'S ', 1 1 ', 'U ', 'nV , "o ',
''', 'a', 'r,, so', It$, 'e', IV', Iwo,

,X,, y,, $ IC, , } , -, del);

Figure F-2 Cont'd. on next page

D.A.REF.AF[BC-M]: 3.0 Implementation-Dependent Characteristics F-7



Figure F-2 (Cont.): Package STANDARD
for CHARACTER urn -- ASCII characters without holes

(0 , 1 , 2 , 3 , 4 , 5 , 6 , 7
8 , 9 , 10 , 11 , 12 , 13 , 14 , 15

16 , 17 , 18 , 19 , 20 , 21 , 22 , 23

24 , 25 26 27 , 28 , 29 , 30 , 31

32 , 33 34 35 , 36 , 37 , 38 , 39

40 , 41 42 43 , 44 , 45 , 46 , 47

48 , 49 50 51 , 52 , 53 , 54 , 55

56 , 57 58 59 , 60 , 61 , 62 , 63

64 , 65 66 67 , 68 , 69 , 70 , 71

72 , 73 74 75 , 76 , 77 , 78 , 79

80 , 81 82 83 , 84 , 85 , 86 , 87

88 , 89 90 91 , 92 , 93 , 94 , 95

96 , 97 98 , 99 , 100, 101, 102, 103,

104, 105, 106, 107, 108, 109, 110, 111,

112, 113, 114, 115, 116, 117, 118, 119,

120, 121, 122, 123, 124, 125, 126, 127);

package ASCII is

-- Control characters:

NUL : constant CHARACTER : nul;

SON : constant CHARACTER := soh;

STX : constant CHARACTER : etx;
ETX : constant CHARACTER : etx;

EOT : constant CHARACTER : eot;

ENQ : constant CHARACTER : enq;

ACK : constant CHARACTER := ack;

BEL : constant CHARACTER :-bel;

88 : constant CHARACTER := be;
HT : constant CHARACTER : ht;
EX : constant CHARACTER := if;
VT : constant CHARACTER := vt;

FF : constant CHARACTER : ff;

CR : constant CHARACTER :" Cr;
so : constant CHARACTER = so;
SI : constant CHARACTER 2= si;
DLE : constant CHARACTER :- dle;
DC1 : constant CHARACTER := dcl;

OC2 : constant CHARACTER : dc2;
DC3 : constant CHARACTER dc.3;
DC4 : constant CHARACTER = dc4;

NAK : constant CHARACTER : nak;
SYN : constant CHARACTER syn;

ETB : constant CHARACTER := etb;

CAN : constant CHARACTER = can;

EM : constant CHARACTER : em;

SUB : constant CHARACTER = Sub;

ESC : constant CHARACTER := eac;

r5 constant CHARACTER : fs;
GS constant CHARACTER : g;
RS constant CHARACTER := re;

US : constant CHARACTER - us;

DEL : constant CHARACTER := del;

Figure F-2 Cont'd. on next page

F-8 Implementation-Dependent CharaCterfbcI D.A.REF.AF[BC-MHI : 3.0 -



Figure F-2 (Cont.): Package STANDARD
-- Other characters:

EXCLAM : constant CHARACTER - '';
QUOTATION : constant CHARACTER - '"';

SHARP : constant CHARACTER :- '#'

DOLLAR : constant CHARACTER IV;
PERCENT : constant CHARACTER -%f;
AMPERSAND : constant CHARACTER : '&';

COLON : constant CHARACTER :- ;
SEMICOLON : constant CHARACTER : ;
QUERY : constant CHARACTER : '7;
AT SIGN : constant CHARACTER :a 0@0;
L BRACKET : constant CHARACTER : '[';
BACKSLASH : constant CHARACTER : = \';
R BRACKET : constant CHARACTER :=
CIRCUMFLEX : constant CHARACTER : '';

UNDERLINE : constant CHARACTER : '

GRAVE : constant CHARACTER : '"';

L BRACE : constant CHARACTER :- '(';
BAR : constant CHARACTER :- "I";
R BRACE : constant CHARACTER :-
TILDE : constant CHARACTER :- '';

-- Lower case letters:

LC A : constant CHARACTER :- 'a';
LCB : constant CHARACTER : 'b';
LCC : constant CHARACTER := 'c';
LCD : constant CHARACTER := 'd';
LC_E : constant CHARACTER : 'e';
LCF : constant CHARACTER : 'f';
LCG : constant CHARACTER : 'g';
LCH : constant CHARACTER : 'h';
LC7I : constant CHARACTER := 'i';
LCJ : constant CHARACTER :-j;
LCK : constant CHARACTER := 'k';
LCL : constant CHARACTER : '1';
LCM : constant CHARACTER : 'im';
LCN : constant CHARACTER : 'n';
LCO : constant CHARACTER :- '0';
LCP : constant CHARACTER := 'p';
LCQ : constant CHARACTER :- q
LCR : constant CHARACTER :- 'r';
LCS : constant CHARACTER :- 'o';
LC T : constant CHARACTER :=t;
LCU : constant CHARACTER : = 'u';

LCV : constant CHARACTER eve;
LCW : constant CHARACTER := 'w';

LC X : constant CHARACTER : = xf;
LCY : constant CHARACTER : 'y';
LC Z : constant CHARACTER : '' ;

end ASCII;

Figure F-2 Cont'd. on next page

D.A.REF.AF[BC-MH] : 3.0 Implementatlon-Dependent Characteristics F-9



Figure F-2 (Cont.): Package STANDARD
-- Predefined subtypes:

subtype NATURAL is INTEGER range 0 .. INTEGER'LAST;

subtype POSITIVE is INTEGER range 1 INTEGER'LAST;

-- Predefined string type:

type STRING is array (POSITIVE range <>) of CHARACTER;

type DURATION is delta 2#1.0#E-7 range
- 16777216.0 .. 16777_215.0;

-- The predefined exceptions:

CONSTRAINT-ERROR : exception;
NUMERIC-ERROR exception;
PROGRAM-ERROR : exception;
STOAGEERROR : exception;
TASKING-ERROR : exception;

end STANDARD;

F.10 Package MACHINECODE
Package MACHINECODE is not supported by this version of the compiler.

F.11 Language-Defined Pragmas
The definition of certain language-defined pragmas is incomplete in the Ada Language Reference Manual
[LRM]. The implementation restrictions imposed on the use of such pragmas are specified in Sections
Section F.11.1 to Section F.11.5.

F.11.1 Pragma INLINE

This pragma supplies a recommendation for inline expansion of a subprogram to the compiler. This
pragma is ignored by this version of the compiler.

F.11.2 Pragma INTERFACE

This pragma allows subprograms written in another language to be called from Ada. The compiler
only supports pragma INTERFACE for ASSEMBLER and RTS.

F.11.2.1 Assembler

Normal Ada calling conventions are used by the compiler when generating a call to an ASSEMBLER
subprogram. The calling mechanism is described in Section F.11.2.1.3. Further information is given
in the Target Handbook (TH[.

F.11.2.1.1 Assembler Names

The name of an interface routine must conform to the naming conventions both of Ada and of the
Ada-Plus MC68020 Assembler. If the Ada identifier is longer than 12 characters then the interface
name is the Ada identifier truncated to 12 characters. Underscore (_) characters in Ada subprogram
names are translated to dollar ($) characters in the call of the assembly code subprogram. The user
must therefore follow this convention when writing the assembly code body. The rest of the characters
are restricted to being underlines, digits or letters. Names within assembler code must use uppercase
letters.

F-10 Implementation-Dependent Characteristics D.A.REF.AF[BC-MHj: 3.0

e e m | | |i i



F.11.2.1.2 Parameter-Passing Conventions

Parameters are passed to the called procedure in the order given in the specification of the subprogram.
with default expressions evaluated, if present.

Scalars are passed by copy for all parameter modes (the value is copied out for parameters with mode
out).
Composite types are passed by reference for all parameter modes.

F.11.2.1.3 Procedure-Calling Mechanism
Normal Ada calling conventions are used by the compiler when generating a subprogram call.
The procedure-calling mechanism uses the run-time stack organisation shown in Figure F-3, and the
routine entry and exit code shown in Figure F-4. Note that the return link is maintained automatically
on a separate stack (SP).

The implementation uses the following dedicated and temporary registers:

SP Link Stack Pointer A7
FP Frame Pointer A2
PP Parameter Frame Pointer A3
TB Task Base Pointer AO
TS Main Stack Pointer Al

These values must be preserved by any assembler code.

D.A.REF.AF[BC-MH] 3.0 Implementation-Dependent Characteristlcs F-11



Figure F-3: Routine Activation Record on Entry to Called Subprogram

LINK STACK

Return Address High address

Return Address SP

t TS

22P (Locals) Local data

P Routine parameters

(Parameters) 4-- FP (in declared order)

n+20 +/- NEST +/- Current nesting level

Pointer to frame of
n+16 STATIC LINK statically enclosing

subprogram.
n+12 EXCEP Address of exception

-- PP handler table

n+8 FP Dynamic predecessor

n-4 SP Saved top of link stack

n pp Saved parameter pointer

Low address
MAIN STACK

F-12 Implementation-Dependent Characteristics D.A.REF.AF[BC-MH: 3.0



Macros RMPBEGIN and RMPEND are provided in the macro library contained within the program
library for the routine entry and exit code respectively. This code is shown in Figure F-4.

Figure F-4: Routine Entry And Exit Code

Routine Entry Code :

MOVE.L SP,(PP)+
MOVE.L FP,(PP)+
MOVEA.L PP,FP
MOVE.L FP,(FP)+
MOVE.L A4,(FP)+
if frame is indirect then * Frame should never be indirect for this macro.
MOVE.W #-<nest>,(FP)+
else
MOVE.W #<nest>,(FP)+
end if

Routine Exit Code

MOVEA.L -(PP),FP
MOVEA.L -(PP),SP
RTS

F.11.2.2 RTS
RTS provides a more efficient calling mechanism, although restrictions are placed on the number of
parameters by the number of available registers. The primary purpose of RTS is for run-time system
calls.

F.11.2.2.1 RTS Names

(see Section F.11.2.1.1, Assembler Names)

F.11.2.2.2 Parameter-Passing Conventions

(see Section F. 11.2.1.2, Parameter-Passing Conventions).
The parameters, P1 .. Pn, are passed in the corresponding order in data registers, DO .. Dn-1. If
the parameters are floating point types, they are passed in floating point registers FPO .. FPn-1. The
number of parameters, n, is restricted to six.

F.11.2.2.3 Procedure-Ceiling Mechanism
Procedures are called directly, no entry and exit code macros are necessary. The procedure-calling
mechanism is outlined in the following example:

procedure P Ia (X : in INTEGER; Y : out INTEGER);

pragma INTERFACE (RTS, P);

X is passed in DO, Y is passed back in Pl.

F.11.3 Pragma OPTIMIZE

This pragma supplies a recommendation to the compiler for the criterion upon which optimisation is
to be performed. This pragma is ignored by this version of the compiler.

D.A.REF.AF[BC-MH] : 3.0 Implementation-Dependent Characteristics F-13



F.11.4 Prsgme PACK

Form

pragma PACK(ypesimple.name);

Takes the simple name of record or array type as a single argument.

Position

The allowed positions for this pragma, and the restrictions on the named type, are governed by
the same rules as for a representation clause; in particular, the pragma must appear before any
use of representation attribute of the packed entity.

Effect

The pragma specifies that storage minimization to storage uni, boundary is the main criterion
when selecting the representation of the given type.

F.11.5 Pregme SUPPRESS

This pragma gives permission for specified run-time checks to be omitted by the compiler. This
pragma is ignored by this version of the compiler.

F-14 Implementation-Dependent Characteristics D.A.REF.AF[BC-MHI : 3.0



APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented
by names that begin with a dollar sign. A value must be suDstituted
for each of these names before the test is run. The values
used for this validation are given below.

NameandMeaning Value

$BIG IDI AA .... Al
Identifier the size of the J-----. 511 characters
maximum input line length with
varying last character.

$BIG ID2 AA .... A2
Identifier the size of the I-----. 511 characters
maximum input line length with
varying last character.

$BIG ID3 AA .... A3A .... A
Identifier the size of the I ----- I ---- I
maximum input line length with 255 256
varying middle character. characters

$BIG ID4 A .... A4A .... A
Identifier the size of the I ---- I I ---- I
maximum input line length with 255 256
varying middle character. characters

$BIG INT LIT 0 .... 0298
An integer literal of value 298 (---.. 509 characters
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG REAL LIT 0 .... 069.OEI
A universal real literal of j-.... 506 characters
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRING1 A .... A
A string literal which when I 256 characters
catenated with BIG STRING2
yields the image of BIGIDl.

Appendix C-Page 1



TEST PARAMETERS

Name andMeaning Value

$BIGSTRING2 A .... Al
A string literal which when --..I 255 characters
catenated to the end of
BIGSTRING1 yields the image of
BIGIDi.

$BLANKS 492 blanks
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 32767
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

SFIELDLAST 255
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FILENAMEWITH BAD CHARS Xf)]!.dat
An external file name that
either contains invalid
characters or is too long.

$FILENAMEWITHWILDCARDCHAR file*.dat

An external file name that
either contains a wild card
character or is too long.

$GREATER THAN DURATION 2.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATERTHANDURATIONBASELAST 16777216.0

A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGALEXTERNAL FILE _ NAME1 bad-charA
An external file name which
contains invalid characters.

Appendix C Page 2



TEST PARAMETERS

NameandMeaning Value

$ILLEGALEXTERNAL FILE NAME2 NOSUCHNAMEPOSSIBLE
An external file name which
is too long.

$INTEGER FIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGER LAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS 1 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESSTHAN DURATION -3.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESSTHANDURATIONBASEFIRST -16777216.0
A universal real literal that is

less than DURATION'BASE'FIRST.

$MAX DIGITS 15
Maximum digits supported for
floating-point types.

$MAX IN LEN 512
Maximum input line length
permitted by the implementation.

$MAX INT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINT PLUS 1 2147483648
A universal integer literal
whose value is SYSTEM.MAXINT+I.

$MAX LEN INT BASEDLITERAL 0 .... 02:11:
A universal integer based I-...I 507 characters
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

Appendix C-Page 3



TEST PARAMETERS

Name andMeaning Value

$MAXLENREALBASEDLITERAL 0.... 016:F.E:
A universal real based literal .... 505 characters

whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAX STRINGLITERAL "A .... A"
A string literal of size ----1 510 characters
MAX IN LEN, including the quote
characters.

$MIN INT -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

$NAME NOSUCHTYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORTINTEGER,
G- L FLOAT, or LONGINTEGER.

$NEG BASED INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

Appendix C-Page 4



APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform
the Ada Standard. The following 27 tests had been withdrawn at
time of validation testing for the reasons indicated. A reference
the form "AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) wrongly follows a 1
declaration.

E28005C: This test requires that 'PRAGMA LIST (ON);' not appear i
listing that has been suspended by a previous "pragma
(OFF);"; the Ada Standard is not clear on this point, and
matter will be reviewed by the ALMP.

C34004A: The expression in line 168 wrongly yields a value outside
the range of the target T, raising CONSTRAINTERROR.

C35502P: The equality operators in lines 62 and 69 should
inequality operators.

A35902C: Line 17's assignment of the nominal upper bound of a f
point type to an object of that type raises CONSTRAINT E
for that value lies outside of the actual range of the ty

C35904A: The elaboration of the fixed-point subtie on line
wrongly raises CONSTRAINT ERROR, because its upper b
exceeds that of the type.

C35904B: The subtype declaration that is expected to ra
CONSTRAINT ERROR when its compatibility is checked aga
that of various types passed as actual generic paramet
may in fact raise NUMERIC ERROR or CONSTRAINTERROR
reasons not anticipated by the test.

C35A03E: This test assumes that attribute 'MANTISSA' returns 0
applied to a fixed-point type with a null range, but the
Standard doesn't support this assumption.

C35AO3R: This test assumes that attribute 'MANTISSA' returns 0
applied to a fixed-point type with a null range, but the
Standard doesn't support this assumption.

APPENDIX D Page 1 of 2



WITHDRAWN TESTS

C37213H: The subtype declaration of SCONS in line 100 is wro
expected to raise an exception when elaborated.

C37213J: The aggregate in line 451 wrongly raises CONSTRAINTERROR

C37215C: Various discriminant constraints are wrongly expected to
C37215E: incompatible with type CONS.
C37215G:
C37215H:

C38102C: The fixed-point conversion on line 3 wrongly ra
CONSTRAINTERROR.

C41402A: 'STORAGESIZE' is wrongly applied to an object of an ac
type.

C45332A: The test expects that either an expression in line 52
raise an exception or else MACHINE OVERFLOWS is FA
Howeve-, an implementation may evaluate the expres
correctly using a type with a wider range than the base
of the operands, and MACHINEOVERFLOWS may still be TRUE.

C45614C: REPORT IDENT INT has an argument of the wrong
(LONG_fNTEGER).

A74016C: A bound specified in a fixed-point subtype declaration
C85018B: Outside that calculated for the base type, raising
C87B04B: CONSTRAINTERROR. Errors of this sort occur re lines 37
CCl311B: 59, 142 and 143, 16 and 48, 252 and 253 of the four t

respectively (and possibly elsewhere).

BC3105A: Lines 159..168 are wrongly expected to be incorrect; they
correct.

ADIA01A: The declaration of subtype INT3 raises CONSTRAINTERROR
implementations that select INT'SIZE to be 16 or greater.

CE2401H: The record aggregates in lines 105 and 117 contain the w
values.

CE3208A: This test expects that an attempt to open the default ou
file (after it was closed) with mode IN FILE ra
NAME ERROR or USEERROR; by Commentary AI-00048, MODE_E
should be raised.

Appendix D Page 2 of 2


